最初的透明蚀刻(最右),黑暗中拍摄的照片(左上),基于物理的算法(右上),训练过的神经网络(左下)。将基于物理的算法和神经网络结合起来,可以更加清晰准确地重建图像(右下)。
研究团队为该神经网络提供了超过 10000 张透明玻璃状的蚀刻图像,它们是在极低光照条件下(每像素约 1 光子)拍摄的。研究一作 Alexandre Goy 表示:
当我们用肉眼去观察时,它们看起来都像一块透明的玻璃。但实际上,其暗藏了非常精细、浅显的结构,仍会对光产生影响。
在完成了对神经网络的训练之后,团队打造了一套全新的模式,它已不再是原始数据集的一部分。在对其进行系统分析后,我们发现深度学习确实可以揭示在黑暗中隐形的物体。
MIT 机械工程系教授 George Barbastathis 指出,若用光照射实验室中的生物细胞,会将它们烧焦而不会留下任何影像。此外,如果让患者接受过量的 X 射线,会增加其患癌的几率。
好消息是,这项技术能够在保持同等图像质量的前提下,减少光线或 X 射线的曝光。除了医学成像,它也适用于天文摄影。
有关这项研究的详情,已经发表在近日出版的《物理评论快报》(Physical Review Letters)上。
免责声明:本文由用户投稿,(图文、音视频)均由用户自行上传分享,文章内容不代表本站立场,本站不对其内容的真实性、完整性、准确性给予任何担保、暗示和承诺,仅供读者参考,文章版权归原作者所有。若您的权利被侵害,请联系本站在线客服进行删除。